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ABSTRACT

As compute clusters continue to grow in scale and complexity, the
frequency of detected anomalies in their operation significantly
increases. Timely detection of anomalous events is vital to maintain
system efficiency and availability. This study presents an attention-
based graph neural network (GNN) for detecting anomalies in clus-
ters at the compute node level and for providing detailed root cause
analysis. We show the effectiveness of attention-based GNNs to
accurately detect and localize anomalies on real-world datasets.

1 INTRODUCTION

Anomalies in a compute cluster are unexpected deviations in the
operation of hardware componentsn that cause performance degra-
dation, system instability, or even complete failure of components
or the entire cluster [3, 4, 12, 14, 18]. Detecting and diagnosing such
anomalies in heterogeneous clusters with batch jobs is challenging,
even for small scale clusters. In such environments, automatic anom-
aly detection and root cause analysis contributes to better system
operation with timely detection of an anomaly and its resolution.

Detecting and diagnosing anomalies in compute clusters often
requires periodically collecting hardware and software metrics,
typically in the form of time series. Metrics collected from CPU,
memory, and disk can indicate the status of a single compute node.
In addition, metrics collected from the network, workflow man-
agement tools such as Slurm[17], and network-shared file systems
such as Lustre [13] can point to anomalies that may propagate to
compute nodes executing the same job. This work focuses on single-
node anomaly prediction using CPU, memory, and disk information
in a cluster setting. E: no network info?

Deep Learning (DL) is effective in detecting anomalies in com-
plex environments [2, 5, 8—10]. In a compute cluster environment,
there are several challenges in implementing DL-based anomaly de-
tection. First, labeling anomalies is nearly impossible, since system
administrators identify them not by standardized thresholds for
specific metrics [15, 16], but by the overall behavior of the entire
compute node. Additionally, anomalies are rare in compute clusters,
with only 0.035% of all real-world cluster events classified as anom-
alies [6]. To address this challenge, we use unsupervised learning to
train our detection model with data on normal node operation.

The second challenge arises from the high-dimensional, multi-
variant nature of the data. Existing DL-based anomaly detection
rely on autoencoders (AE), requiring an understanding of specific
monitored metrics that are pivotal in pinpointing anomalies. These
metrics are often tightly coupled and their significance in detect-
ing anomalies may dynamically shift depending on the anomaly
source [7]. AE-based solutions fail to capture the implicit relations
between monitored metrics within a cluster setting. To address this
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Figure 1: Workflow of attention-based GNN for anomaly
prediction.

challenge, we build relationship graphs for all monitored metrics
and employ an attention-based mechanism, see Section 2.

Last but not least, the anomaly detection solution should apply to
different hardware metrics but what is definied as anomaly may be
different across different hardware components. Here, we maintain
the generality of the DL model while customizing the anomaly
identification process to adapt to different hardware metrics.

2 DESIGN

We propose an anomaly detection framework using an attention-
based GNN that is trained in an unsupervised manner, i.e., using
only data collected while the system is not experiencing an anomaly.
Figure 1 provides the workflow of the framework, (I) data collection,
(I) monitored metrics embedding, (III) learned features relation
graph, (IV) attention-based GNN model, and (V) anomaly detection
for each compute node. Specifically, data collection (I) and GNN
model training (II-IV) happen offline, and anomaly detection (V)
happens online. We introduce each of the components below:

Monitored metrics embedding. Embeddings built over the
historical time series data capture the unique characteristics of each
monitored metric. Input embeddings for each monitored metrics are
organized as vectors with w elements, where w is a hyperparameter
representing the size of the sliding window (time).

Relation graph learning. A directed graph is created using
monitored metrics embeddings. Nodes represent monitored metrics,
while edges show dependency relationships between them. We use
the cosine distance is used to calculate edge weights, then prune
the graph based on the distance (EdgeThreshold) and number of
neighbors (topK), where topK limits the number of features con-
tributing to a single feature by selecting only the top 'k’ features for



each node. EdgeThreshold refines the graph structure by preserv-
ing only those edges with a similarity exceeding the set threshold..
Component III in figure 1 demonstrates a learned relation graph
with EdgeThreshold and topK set to 0.5 and 5, respectively.
Attention-based prediction. We predict each monitored met-
ric at each time step with, utilizing the past behavior of the moni-
tored metric and its neighboring metrics within the learned relation
graph of the GNN. The relation graph, once learned, enables cap-
turing of all monitored metrics associated with anomalies.
Anomaly detection for each compute node. As show in
component V in figure 1, we identify anomalies as significant devia-
tions from the ground truth (i.e., the expected behavior). Our model
detects and explains anomalies by computing individual scores Sl.t
for each monitored metric i at time step t. To localize anomalies,
we perform a robust normalization of each monitored metric to
prevent potentially overly dominant deviations of a single metric.
The framework further computes the overall anomaly scores S* by
aggregating all individual scores with the max function. Anomalies
are detected when the overall anomaly scores exceed a threshold 7.

3 EVALUATION

Experiment setup. We evaluate our anomaly detection frame-
work on a scientific computing cluster within the Jefferson Lab
production environment. The cluster has 332 computational nodes
divided into five groups with different hardware properties. All
monitored metrics from each compute node are consolidated into
one single monitor node, facilitated by the Prometheus database. We
focused on CPU, memory, and IO anomalies. The datasets included
8 CPU metrics, 47 memory metrics, and 11 disk metrics, compris-
ing over one million records with 181GB raw data. Leveraging an
automatic hyperparameter tuner[1], we choose a combination of w,
EdgeThreshold, and topK, which performed best on a validation
dataset achieving minimum anomaly scores for each input feature.

Efficiency in detecting synthetic anomalies. To verify the
efficiency of the anomaly detection framework, we inject Gauss-
ian noise into different monitored metrics and create a synthetic
dataset with anomalies. We use the framework to find (1) Which
compute node is abnormal? (2) Which hardware component and its
corresponding feature is responsible for the (predicted) anomaly?

We evaluate five compute node groups with different hardware
properties, and set the anomaly threshold 7; and 7y as the 100th
percentile and the 99.99th percentile of the normal data, respectively.
Consistent with standard practice, we report the precision of the
anomaly prediction at the compute node defined as the fraction of
actual anomalies among the predicted anomalies [11].

To quantify the answer to the second question, we define the
accuracy of root cause analysis, which is calculated as the ratio
of successful root cause identifications to the predicted anomalies.
Table 1 shows the results. Our framework successful detects 89%
of anomalies in five groups of compute nodes. Specifically, our
framework is more sensitive to CPU and memory anomalies, and
pinpoints the root cause of anomalies 86% on average.

Efficiency in detecting anomalies on real-world cluster.
We tested our framework using the disk anomalies dataset from
Jefferson Lab. We observe that the attention-based GNN model can
accurately predict monitored metrics’ value with mean squared
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Table 1: Evaluating on synthetic anomalies. “Pre” is short for
“precision” and “RCA” is short for “root cause accuracy”.
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error (MSE) of only 0.001. Moreover, the model accurately detects
anomalies, including nodes that lack a clearly anomalous signature
but are identified as anomalous in ground truth.

4 CONCLUSION

In this work, we propose an unsupervised attention-based GNN
that learns a graph of relationships between monitored metrics to
detect deviations and provide root cause analysis. Our approach
is validated using real-world datasets, demonstrating its capability
in accurately detecting and localizing anomalies. Our future work
aims to explore additional real-world anomalies and enable contin-
ual learning with GNN to detect anomalies in complex, dynamic
compute clusters.
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