Investigating Anomalies in Compute Clusters: An Unsupervised
Learning Approach

Yiyang Lu, Jie Ren', Yasir Alanazi’, Ahmed Mohammed$, Diana McSpadden§, Laura Hild®, Mark

Jones$, Wesley Moore¥, Malachi Schram?, Bryan Hess, Evgenia Smirni’
1 William & Mary, § Thomas Jefferson National Accelerator Facility

ABSTRACT

As compute clusters continue to grow in scale and complexity, the
frequency of detected anomalies in their operation significantly
increases. Timely detection of anomalous events is vital to maintain
system efficiency and availability. This study presents an attention-
based graph neural network (GNN) for detecting anomalies in clus-
ters at the compute node level and for providing detailed root cause
analysis. We show the effectiveness of attention-based GNNs to
accurately detect and localize anomalies on real-world datasets.

1 INTRODUCTION

Anomalies in a compute cluster are unexpected deviations in the
operation of hardware componentsn that cause performance degra-
dation, system instability, or even complete failure of components
or the entire cluster [3, 4, 12, 14, 18]. Detecting and diagnosing such
anomalies in heterogeneous clusters with batch jobs is challenging,
even for small scale clusters. In such environments, automatic anom-
aly detection and root cause analysis contributes to better system
operation with timely detection of an anomaly and its resolution.

Detecting and diagnosing anomalies in compute clusters often
requires periodically collecting hardware and software metrics,
typically in the form of time series. Metrics collected from CPU,
memory, and disk can indicate the status of a single compute node.
In addition, metrics collected from the network, workflow man-
agement tools such as Slurm[17], and network-shared file systems
such as Lustre [13] can point to anomalies that may propagate to
compute nodes executing the same job. This work focuses on single-
node anomaly prediction using CPU, memory, and disk information
in a cluster setting. E: no network info?

Deep Learning (DL) is effective in detecting anomalies in com-
plex environments [2, 5, 8—10]. In a compute cluster environment,
there are several challenges in implementing DL-based anomaly de-
tection. First, labeling anomalies is nearly impossible, since system
administrators identify them not by standardized thresholds for
specific metrics [15, 16], but by the overall behavior of the entire
compute node. Additionally, anomalies are rare in compute clusters,
with only 0.035% of all real-world cluster events classified as anom-
alies [6]. To address this challenge, we use unsupervised learning to
train our detection model with data on normal node operation.

The second challenge arises from the high-dimensional, multi-
variant nature of the data. Existing DL-based anomaly detection
rely on autoencoders (AE), requiring an understanding of specific
monitored metrics that are pivotal in pinpointing anomalies. These
metrics are often tightly coupled and their significance in detect-
ing anomalies may dynamically shift depending on the anomaly
source [7]. AE-based solutions fail to capture the implicit relations
between monitored metrics within a cluster setting. To address this

Clusters "\ /" Monitored Metrics Embedding
Input Embeddings | |

Learned Featrue Relation Graph

\

05

: \42
: N
r disk_io_r . . :70
__________ o

Anomaly Detection for Each Compute Node /" Attention-based Prediciton "

m

(s

Input: Graph Structure——

[0y = 1, Ny ‘ !)
Normalize 59 with the Robustscater ‘ 7AGRY S(H” v g
rmalize S wi u - 5. uEm s >
: . sy 115 ¢
S = max(5{"*V), i* = argmax; S; ‘ S+ 3 '§'g 3| o §
; v, S v, | v wmm |5 (823 ()| 8
. . a |oe-| v
<§H > 7> NO . : 5 < 11 2.
‘ : : 3 a
. £
YES [No anomalies at time (¢ + 1) | i st y b w
: v RN -V, Vv <
(Anomalies related to feature i*
| /may happen at time (t + 1).
v * v

Figure 1: Workflow of attention-based GNN for anomaly
prediction.

challenge, we build relationship graphs for all monitored metrics
and employ an attention-based mechanism, see Section 2.

Last but not least, the anomaly detection solution should apply to
different hardware metrics but what is definied as anomaly may be
different across different hardware components. Here, we maintain
the generality of the DL model while customizing the anomaly
identification process to adapt to different hardware metrics.

2 DESIGN

We propose an anomaly detection framework using an attention-
based GNN that is trained in an unsupervised manner, i.e., using
only data collected while the system is not experiencing an anomaly.
Figure 1 provides the workflow of the framework, (I) data collection,
(I) monitored metrics embedding, (III) learned features relation
graph, (IV) attention-based GNN model, and (V) anomaly detection
for each compute node. Specifically, data collection (I) and GNN
model training (II-IV) happen offline, and anomaly detection (V)
happens online. We introduce each of the components below:

Monitored metrics embedding. Embeddings built over the
historical time series data capture the unique characteristics of each
monitored metric. Input embeddings for each monitored metrics are
organized as vectors with w elements, where w is a hyperparameter
representing the size of the sliding window (time).

Relation graph learning. A directed graph is created using
monitored metrics embeddings. Nodes represent monitored metrics,
while edges show dependency relationships between them. We use
the cosine distance is used to calculate edge weights, then prune
the graph based on the distance (EdgeThreshold) and number of
neighbors (topK), where topK limits the number of features con-
tributing to a single feature by selecting only the top 'k’ features for

each node. EdgeThreshold refines the graph structure by preserv-
ing only those edges with a similarity exceeding the set threshold..
Component III in figure 1 demonstrates a learned relation graph
with EdgeThreshold and topK set to 0.5 and 5, respectively.
Attention-based prediction. We predict each monitored met-
ric at each time step with, utilizing the past behavior of the moni-
tored metric and its neighboring metrics within the learned relation
graph of the GNN. The relation graph, once learned, enables cap-
turing of all monitored metrics associated with anomalies.
Anomaly detection for each compute node. As show in
component V in figure 1, we identify anomalies as significant devia-
tions from the ground truth (i.e., the expected behavior). Our model
detects and explains anomalies by computing individual scores Sl.t
for each monitored metric i at time step t. To localize anomalies,
we perform a robust normalization of each monitored metric to
prevent potentially overly dominant deviations of a single metric.
The framework further computes the overall anomaly scores S* by
aggregating all individual scores with the max function. Anomalies
are detected when the overall anomaly scores exceed a threshold 7.

3 EVALUATION

Experiment setup. We evaluate our anomaly detection frame-
work on a scientific computing cluster within the Jefferson Lab
production environment. The cluster has 332 computational nodes
divided into five groups with different hardware properties. All
monitored metrics from each compute node are consolidated into
one single monitor node, facilitated by the Prometheus database. We
focused on CPU, memory, and IO anomalies. The datasets included
8 CPU metrics, 47 memory metrics, and 11 disk metrics, compris-
ing over one million records with 181GB raw data. Leveraging an
automatic hyperparameter tuner[1], we choose a combination of w,
EdgeThreshold, and topK, which performed best on a validation
dataset achieving minimum anomaly scores for each input feature.

Efficiency in detecting synthetic anomalies. To verify the
efficiency of the anomaly detection framework, we inject Gauss-
ian noise into different monitored metrics and create a synthetic
dataset with anomalies. We use the framework to find (1) Which
compute node is abnormal? (2) Which hardware component and its
corresponding feature is responsible for the (predicted) anomaly?

We evaluate five compute node groups with different hardware
properties, and set the anomaly threshold 7; and 7y as the 100th
percentile and the 99.99th percentile of the normal data, respectively.
Consistent with standard practice, we report the precision of the
anomaly prediction at the compute node defined as the fraction of
actual anomalies among the predicted anomalies [11].

To quantify the answer to the second question, we define the
accuracy of root cause analysis, which is calculated as the ratio
of successful root cause identifications to the predicted anomalies.
Table 1 shows the results. Our framework successful detects 89%
of anomalies in five groups of compute nodes. Specifically, our
framework is more sensitive to CPU and memory anomalies, and
pinpoints the root cause of anomalies 86% on average.

Efficiency in detecting anomalies on real-world cluster.
We tested our framework using the disk anomalies dataset from
Jefferson Lab. We observe that the attention-based GNN model can
accurately predict monitored metrics’ value with mean squared

Yiyang Lu et al.

Table 1: Evaluating on synthetic anomalies. “Pre” is short for
“precision” and “RCA” is short for “root cause accuracy”.

Gl4 | G16 | GI8 | G19 | G23 | Avg.
pre. |0 072 [072 | 092 | 1 1 [087

oPU P 1 1 1 1 1
oA L0 | 068 [056 | 092 | 1 T | 083
P 1T (0875 | 1 1 |09
bre. |01 074 [086 | 1 1 1 | 092
" o 1 1 0 1 T [08
emory oA L7074 [082 | 1 1 1 | 091
o 1 1 0 1 EE
pre L7 063 [079 | 1 1 1 | 088
. P 1 0 1 T [06
Disk ReA L7047 [075 [1 1 1 | 084
P 1 0 1 T] 06

error (MSE) of only 0.001. Moreover, the model accurately detects
anomalies, including nodes that lack a clearly anomalous signature
but are identified as anomalous in ground truth.

4 CONCLUSION

In this work, we propose an unsupervised attention-based GNN
that learns a graph of relationships between monitored metrics to
detect deviations and provide root cause analysis. Our approach
is validated using real-world datasets, demonstrating its capability
in accurately detecting and localizing anomalies. Our future work
aims to explore additional real-world anomalies and enable contin-
ual learning with GNN to detect anomalies in complex, dynamic
compute clusters.

ACKNOWLEDGEMENT

Yiyang Lu and Evgenia Smirni are partially supported by NSF grant
2130681. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Nuclear Physics
under contract DE-AC05-060R23177.

Investigating Anomalies in Compute Clusters: An Unsupervised Learning Approach

REFERENCES

(1]

(2]

(8]

(9]

[11]

[12]

[13

[14]

[15]

[16]

[17]

[18

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. http://arxiv.org/abs/1907.10902 arXiv:1907.10902 [cs, stat].

Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia Smirni. 2019. SSD failures in the
field: symptoms, causes, and prediction models. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2019, Denver, Colorado, USA, November 17-19, 2019, Michela Taufer, Pavan
Balaji, and Antonio J. Pefia (Eds.). ACM, 75:1-75:14. https://doi.org/10.1145/
3295500.3356172

Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Evgenia
Smirni. 2008. Anomaly? application change? or workload change? towards
automated detection of application performance anomaly and change. In 2008
IEEE International Conference on Dependable Systems and Networks With FTCS
and DCC (DSN). 452-461. https://doi.org/10.1109/DSN.2008.4630116 ISSN:
2158-3927.

Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Evgenia
Smirni. 2009. Automated anomaly detection and performance modeling of
enterprise applications. ACM Transactions on Computer Systems 27, 3 (Nov. 2009),
6:1-6:32. https://doi.org/10.1145/1629087.1629089

Ailin Deng and Bryan Hooi. 2021. Graph neural network-based anomaly detec-
tion in multivariate time series. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 4027-4035.

Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, and Andrea
Bartolini. 2023. RUAD: Unsupervised Anomaly Detection in HPC Systems.
Future Gener. Comput. Syst. 141, C (apr 2023), 542-554. https://doi.org/10.1016/j.
future.2022.12.001

Bin Nie, Jianwu Xu, Jacob Alter, Haifeng Chen, and Evgenia Smirni. 2020. Mining
Multivariate Discrete Event Sequences for Knowledge Discovery and Anom-
aly Detection. In 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2, 2020. IEEE,
552-563. https://doi.org/10.1109/DSN48063.2020.00067

Bin Nie, Ji Xue, Saurabh Gupta, Christian Engelmann, Evgenia Smirni, and De-
vesh Tiwari. 2017. Characterizing Temperature, Power, and Soft-Error Behaviors
in Data Center Systems: Insights, Challenges, and Opportunities. In 25th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS 2017, Banff, AB, Canada, September 20-22,
2017. IEEE Computer Society, 22-31. https://doi.org/10.1109/MASCOTS.2017.12
Bin Nie, Ji Xue, Saurabh Gupta, Tirthak Patel, Christian Engelmann, Evgenia
Smirni, and Devesh Tiwari. 2018. Machine Learning Models for GPU Error
Prediction in a Large Scale HPC System. In 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2018, Luxembourg City,
Luxembourg, June 25-28, 2018. IEEE Computer Society, 95-106. https://doi.org/
10.1109/DSN.2018.00022

Riccardo Pinciroli, Lishan Yang, Jacob Alter, and Evgenia Smirni. 2023. Lifespan
and Failures of SSDs and HDDs: Similarities, Differences, and Prediction Models.
IEEE Trans. Dependable Secur. Comput. 20, 1 (2023), 256-272. https://doi.org/10.
1109/TDSC.2021.3131571

David MW Powers. 2020. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061
(2020).

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly
detection in time series: a comprehensive evaluation. Proceedings of the VLDB
Endowment 15, 9 (May 2022), 1779-1797. https://doi.org/10.14778/3538598.
3538602

Philip Schwan et al. 2003. Lustre: Building a file system for 1000-node clusters.
In Proceedings of the 2003 Linux symposium, Vol. 2003. 380-386.

Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus]J. Leung,
Manuel Egele, and Ayse K. Coskun. 2019. Online Diagnosis of Performance
Variation in HPC Systems Using Machine Learning. IEEE Transactions on Parallel
and Distributed Systems 30, 4 (April 2019), 883-896. https://doi.org/10.1109/TPDS.
2018.2870403 Conference Name: IEEE Transactions on Parallel and Distributed
Systems.

Ji Xue, Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2016. Tale of Tails:
Anomaly Avoidance in Data Centers. In 35th IEEE Symposium on Reliable Dis-
tributed Systems, SRDS 2016, Budapest, Hungary, September 26-29, 2016. IEEE
Computer Society, 91-100. https://doi.org/10.1109/SRDS.2016.021

Ji Xue, Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2018. Spatial-Temporal
Prediction Models for Active Ticket Managing in Data Centers. IEEE Trans. Netw.
Serv. Manag. 15, 1 (2018), 39-52. https://doi.org/10.1109/TNSM.2018.2794409
Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on job scheduling strategies for
parallel processing. Springer, 44-60.

Qi Zhang, Ludmila Cherkasova, Guy Mathews, Wayne Greene, and Evgenia
Smirni. 2007. R-Capriccio: A Capacity Planning and Anomaly Detection Tool
for Enterprise Services with Live Workloads. In Middleware 2007 (Lecture Notes
in Computer Science), Renato Cerqueira and Roy H. Campbell (Eds.). Springer,

Berlin, Heidelberg, 244-265. https://doi.org/10.1007/978-3-540-76778-7_13

http://arxiv.org/abs/1907.10902
https://doi.org/10.1145/3295500.3356172
https://doi.org/10.1145/3295500.3356172
https://doi.org/10.1109/DSN.2008.4630116
https://doi.org/10.1145/1629087.1629089
https://doi.org/10.1016/j.future.2022.12.001
https://doi.org/10.1016/j.future.2022.12.001
https://doi.org/10.1109/DSN48063.2020.00067
https://doi.org/10.1109/MASCOTS.2017.12
https://doi.org/10.1109/DSN.2018.00022
https://doi.org/10.1109/DSN.2018.00022
https://doi.org/10.1109/TDSC.2021.3131571
https://doi.org/10.1109/TDSC.2021.3131571
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.1109/TPDS.2018.2870403
https://doi.org/10.1109/TPDS.2018.2870403
https://doi.org/10.1109/SRDS.2016.021
https://doi.org/10.1109/TNSM.2018.2794409
https://doi.org/10.1007/978-3-540-76778-7_13

	Abstract
	1 Introduction
	2 Design
	3 Evaluation
	4 Conclusion
	References

